How the Destabilization of a Reaction Intermediate Affects Enzymatic Efficiency: the Case of Human Transketolase

2020 
Atomic resolution X-ray crystallography has shown that an intermediate (the X5P-ThDP adduct) of the catalytic cycle of transketolase (TK) displays a significant, putatively highly-energetic, out-of-plane distortion in a sp2 carbon adjacent to a lytic bond, suggested to lower the barrier of the subsequent step, and thus was postulated to embody a clear-cut demonstration of the intermediate destabilization effect. The lytic bond of the subsequent rate-limiting step was very elongated in the X-ray structure (1.61 A), which was proposed to be a consequence of the out-of-plane distortion. Here we use high-level QM and QM/MM calculations to study the intermediate destabilization effect. We show that the intrinsic energy penalty for the observed distortion is small (0.2 kcal.mol-1), and that the establishment of a favorable hydrogen bond within X5P-ThDP, instead of enzyme steric strain, was found to be the main cause for the distortion. As the net energetic effect of the distortion is small, the establishment of...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    8
    Citations
    NaN
    KQI
    []