Estimating the Stresses in Linear Viscoelastic Sealants Subjected to Thermally-Driven Deformations

2011 
A framework for linear viscoelastic analysis of sealants is presented for analyzing stresses resulting from thermally driven deformations. Assuming that the strains induced within the sealant are proportional to the change in temperature from the strain-free state, the nominal stress state within the sealant can be estimated. The analysis method is used to estimate the stress states resulting from assumed diurnal temperature profiles for two representative Dow Corning silicone glazing sealants: a conventional elastomer and a crosslinked hot melt adhesive containing a high volume fraction of a silicate-based nanoparticle filler. The latter exhibits considerably more rate- and temperature-dependence than conventional silicones. The viscoelastic analysis allows for comparisons of stresses resulting in these two sealant systems, which are presented for several sinusoidal thermal profiles. However, the pronounced yielding behavior exhibited by the hot melt appears to limit the stress buildup, resulting in stre...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    5
    Citations
    NaN
    KQI
    []