Node-Subset Scheduling with a Subset-Reset Mechanism for the Decoding Algorithm of Nonbinary LDPC Codes

2021 
For the conventional extended min-sum (EMS) algorithm, all check nodes update their check-to-variable (C2V) messages in every iteration. Selected scheduling, which reduces the number of check nodes for message updating in one iteration, can effectively reduce the complexity of the decoding algorithm, but it also lead to some performance degradation. With the introduction of a metric based on node stability, we propose stability-based node-subset scheduling (SNS) for the EMS algorithm, which can improve the performance of node-subset scheduling (NS). Second, to further improve the decoding performance of SNS while maintaining low complexity, we propose the SNS-EMS algorithm with a subset-reset mechanism (RSNS-EMS) based on the abnormal stability found in the processing node subset, which will cause the estimated codeword to fail to converge. The RSNS-EMS algorithm enhances performance through a sliding window detection and reset mechanism, and it resets the elements in the processing node subset to force all check nodes to update new messages when abnormal stability is detected. The simulation results show that the proposed algorithm can reduce complexity by approximately 25% with negligible performance degradation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []