Synthetic properties of locally compact groups: preservation and transference

2021 
Using techniques from TRO equivalence of masa bimodules we prove various transference results: We show that when $\alpha$ is a group homomorphism which pushes forward the Haar measure of $G$ to a measure absolutely continuous with respect to the Haar measure on $H$, then $(\alpha\times\alpha)^{-1}$ preserves sets of compact operator synthesis, and conversely when $\alpha$ is onto. We also prove similar preservation results for operator Ditkin sets and operator M-sets, obtaining preservation results for M-sets as corollaries. Some of these results extend or complement existing results of Ludwig, Shulman, Todorov and Turowska.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    0
    Citations
    NaN
    KQI
    []