Synthesis, Antimalarial Activity, and Molecular Modeling of Tebuquine Analogues

1997 
Tebuquine (5) is a 4-aminoquinoline that is significantly more active than amodiaquine (2) and chloroquine (1) both in vitro and in vivo. We have developed a novel more efficient synthetic route to tebuquine analogues which involves the use of a palladium-catalyzed Suzuki reaction to introduce the 4-chlorophenyl moiety into the 4-hydroxyaniline side chain. Using similar methodology, novel synthetic routes to fluorinated (7a,b) and a dehydroxylated (7c) analogue of tebuquine have also been developed. The novel analogues were subjected to testing against the chloroquine sensitive HB3 strain and the chloroquine resistant K1 strain of Plasmodium falciparum. Tebuquine was the most active compound tested against both strains of Plasmodia. Replacement of the 4-hydroxy function with either fluorine or hydrogen led to a decrease in antimalarial activity. Molecular modeling of the tebuquine analogues alongside amodiaquine and chloroquine reveals that the inter-nitrogen separation in this class of drugs ranges betwe...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    100
    Citations
    NaN
    KQI
    []