Adsorption Performance and Mechanism of Synthetic Schwertmannite to Remove Low-Concentration Fluorine in Water.

2021 
Fluorine (F) in water has a negative effect on the environment and human health. Schwertmannite has potential remediation to contamination in solution. In this study, the adsorption mechanism and influencing factors of synthetic schwertmannite for low-concentration F were studied through batch experiments. The results suggested that the adsorption of F by schwertmannite reached equilibrium after about 60 min, and the adsorption efficiency exceeded 94%. The experimental data can be best-fit by the pseudo-second-order kinetic and Langmuir models well. Schwertmannite showed effective adsorption at pH 4, dosage 1.5 g L−1, low temperature, and low concentration of co-existing anion. The adsorption process was a spontaneous and exothermic reaction, which was dominated by chemical adsorption. FT-IR and XPS spectra analysis revealed that F adsorption on schwertmannite through the surface complexation and anion exchange reaction between SO42− and OH− with F−, especially the primary role of OH−. The results can provide theoretical support for the schwertmannite application in the treatment of F-containing wastewater.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    2
    Citations
    NaN
    KQI
    []