Machine-Learning-Aided Cognitive Reconfiguration for Flexible-Bandwidth HPC and Data Center Networks

2020 
This paper proposes a machine-learning (ML)-aided cognitive approach for effective bandwidth reconfiguration in optically interconnected datacenter/high-performance computing (HPC) systems. The proposed approach relies on a Hyper-X-like architecture augmented with flexible-bandwidth photonic interconnections at large scales using a hierarchical intra/inter-POD photonic switching layout. We first formulate the problem of the connectivity graph and routing scheme optimization as a mixed-integer linear programming model. A two-phase heuristic algorithm and a joint optimization approach are devised to solve the problem with low time complexity. Then, we propose an ML-based end-to-end performance estimator design to assist the network control plane with intelligent decision making for bandwidth reconfiguration. Numerical simulations using traffic distribution profiles extracted from HPC applications traces as well as random traffic matrices verify the accuracy performance of the ML design estimator (${\lt}9\%$<9% error) and demonstrate up to $5 \times$5× throughput gain from the proposed approach compared with the baseline Hyper-X network using fixed all-to-all intra/inter-portable data center interconnects.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    3
    Citations
    NaN
    KQI
    []