Multistimuli-Regulated Photochemothermal Cancer Therapy Remotely Controlled via Fe5C2 Nanoparticles

2016 
Stimuli-controlled drug delivery and release is of great significance in cancer therapy, making a stimuli-responsive drug carrier highly demanded. Herein, a multistimuli-controlled drug carrier was developed by coating bovine serum albumin on Fe5C2 nanoparticles (NPs). With a high loading of the anticancer drug doxorubicin, the nanoplatform provides a burst drug release when exposed to near-infrared (NIR) light or acidic conditions. In vitro experiment demonstrated a NIR-regulated cell inhibition that is ascribed from cellular uptake of the carrier and the combination of photothermal therapy and enhanced drug release. The carrier is also magnetic-field-responsive, which enables targeted drug delivery under the guidance of a magnetic field and monitors the theranostic effect by magnetic resonance imaging. In vivo synergistic effect demonstrates that the magnetic-driven accumulation of NPs can induce a complete tumor inhibition without appreciable side effects to the treated mice by NIR irradiation, due to ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    113
    Citations
    NaN
    KQI
    []