Giant strain gradient elasticity in SrTiO3 membranes: bending versus stretching.
2020
Young's modulus determines the mechanical loads required to elastically stretch a material, and also, the loads required to bend it, given that bending stretches one surface while compressing the opposite one. Flexoelectric materials have the additional property of becoming electrically polarized when bent. While numerous studies have characterized this flexoelectric coupling, its impact on the mechanical response, due to the energy cost of polarization upon bending, is largely unexplored. This intriguing contribution of strain gradient elasticity is expected to become visible at small length scales where strain gradients are geometrically enhanced, especially in high permittivity insulators. Here we present nano-mechanical measurements of freely suspended SrTiO3 membrane drumheads. We observe a striking non-monotonic thickness dependence of Young's modulus upon small deflections. Furthermore, the modulus inferred from a predominantly bending deformation is three times larger than that of a predominantly stretching deformation for membranes thinner than 20 nm. In this regime we extract a giant strain gradient elastic coupling of ~2.2e-6 N, which could be used in new operational regimes of nano-electro-mechanics.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
45
References
5
Citations
NaN
KQI