Foraging deeply: depth‐specific plant nitrogen uptake in response to climate‐induced N‐release and permafrost thaw in the High Arctic

2020 
Warming in the Arctic accelerates top-soil decomposition and deep-soil permafrost thaw. This may lead to an increase in plant-available nutrients throughout the active layer soil and near the permafrost thaw front. For nitrogen (N) limited high arctic plants, increased N availability may enhance growth and alter community composition, importantly affecting the ecosystem carbon balance. However, the extent to which plants can take advantage of this newly available N may be constrained by the following three factors: vertical distribution of N within the soil profile, timing of N-release, and competition with other plants and microorganisms. Therefore, we investigated species- and depth-specific plant N uptake in a high arctic tundra, northeastern Greenland. Using stable isotopic labelling (15 N-NH4+ ), we simulated autumn N-release at three depths within the active layer: top (10 cm), mid (45 cm) and deep-soil near the permafrost thaw front (90 cm). We measured plant species-specific N uptake immediately after N-release (autumn) and after 1 year, and assessed depth-specific microbial N uptake and resource partitioning between above- and below-ground plant parts, microorganisms and soil. We found that high arctic plants actively foraged for N past the peak growing season, notably the graminoid Kobresia myosuroides. While most plant species (Carex rupestris, Dryas octopetala, K. myosuroides) preferred top-soil N, the shrub Salix arctica also effectively acquired N from deeper soil layers. All plants were able to obtain N from the permafrost thaw front, both in autumn and during the following growing season, demonstrating the importance of permafrost-released N as a new N source for arctic plants. Finally, microbial N uptake markedly declined with depth, hence, plant access to deep-soil N pools is a competitive strength. In conclusion, plant species-specific competitive advantages with respect to both time- and depth-specific N-release may dictate short- and long-term plant community changes in the Arctic and consequently, larger-scale climate feedbacks.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    6
    Citations
    NaN
    KQI
    []