Shaped Pd–Ni–Pt Core-Sandwich-Shell Nanoparticles: Influence of Ni Sandwich Layers on Catalytic Electrooxidations
2014
Shape-controlled metal nanoparticles (NPs) interfacing Pt and nonprecious metals (M) are highly active energy conversion electrocatalysts; however, there are still few routes to shaped M–Pt core–shell NPs and fewer studies on the geometric effects of shape and strain on catalysis by such structures. Here, well-defined cubic multilayered Pd–Ni–Pt sandwich NPs are synthesized as a model platform to study the effects of the nonprecious metal below the shaped Pt surface. The combination of shaped Pd substrates and mild reduction conditions directs the Ni and Pt overgrowth in an oriented, layer-by-layer fashion. Exposing a majority of Pt(100) facets, the catalytic performance in formic acid and methanol electro-oxidations (FOR and MOR) is assessed for two different Ni layer thicknesses and two different particle sizes of the ternary sandwich NPs. The strain imparted to the Pt shell layer by the introduction of the Ni sandwich layer (Ni–Pt lattice mismatch of ∼11%) results in higher specific initial activities ...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
63
References
115
Citations
NaN
KQI