Long-Term Forecasting of Electrical Loads in Kuwait Using Prophet and Holt–Winters Models

2020 
The rapidly increasing population growth and expansion of urban development are undoubtedly two of the main reasons for increasing global energy consumption. Accurate long-term forecasting of peak load is essential for saving time and money for countries’ power generation utilities. This paper introduces the first investigation into the performance of the Prophet model in the long-term peak load forecasting of Kuwait. The Prophet model is compared with the well-established Holt–Winters model to assess its feasibility and accuracy in forecasting long-term peak loads. Real data of electric load peaks from Kuwait powerplants from 2010 to 2020 were used for the electric load peaks, forecasting the peak load between 2020 and 2030. The Prophet model has shown more accurate predictions than the Holt–Winters model in five statistical performance metrics. Besides, the robustness of the two models was investigated by adding Gaussian white noise of different intensities. The Prophet model has proven to be more robust to noise than the Holt–Winters model. Furthermore, the generalizability test of the two models has shown that the Prophet model outperforms the Holt–Winters model. The reported results suggest that the forecasted maximum peak load is expected to reach 18,550 and 19,588 MW for the Prophet and Holt–Winters models by 2030 in Kuwait. The study suggests that the best months for scheduling the preventive maintenance for the year 2020 and 2021 are from November 2020 until March 2021 for both models.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    9
    Citations
    NaN
    KQI
    []