An Ultra-long Life, High-performance, Flexible Li-CO2 Battery Based on Multifunctional Carbon Electrocatalysts

2020 
Abstract Integrating CO2 utilization and renewable energy delivery/storage, the rechargeable Li-CO2 battery has been considered as a promising candidate for next-generation secondary batteries. However, high-performance catalyst(s) for efficient formation and decomposition of the discharge product, Li2CO3, are an imperative part of a Li-CO2 battery. The development of flexible Li-CO2 batteries extends their applications into compliant and wearable devices/systems, but at the same time imposes a big challenge for battery fabrication and lifetime enhancement. In this study, a rechargeable quasi-solidus flexible Li-CO2 battery was designed and fabricated using highly active N,S-doped carbon nanotubes (N,S-doped CNTs) as the cathode catalyst, and a smart polymer gel as the flexible electrolyte. This newly-developed flexible Li-CO2 battery exhibited a capacity as high as 23560 mAh g-1 based on the catalyst mass and an ultra-long lifetime of up to 538 cycles with excellent mechanical flexibility. This work provides a platform for the design and development of high-performance flexible Li-CO2 batteries from low-cost, earth-abundant, carbon-based multifunctional cathode catalysts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    28
    Citations
    NaN
    KQI
    []