Kinase-dependent and -independent functions of the p110β phosphoinositide-3-kinase in cell growth, metabolic regulation and oncogenic transformation

2008 
Upon activation by receptors, the ubiquitously expressed Class IA isoforms (p110α and p110β) of phosphoinositide-3-kinase (PI3K) generate lipid second messengers, which initiate multiple signal transduction cascades1–5. Recent studies have demonstrated specific roles for p110α in growth factor and insulin signaling6–8. To probe for distinct functions of p110β, we constructed conditional knockout mice. Ablation of p110β in the livers of the resulting mice led to impaired insulin sensitivity and glucose homeostasis, while having little effect on Akt-phosphorylation, suggesting involvement of a kinase-independent role of p110β in insulin metabolic action. Using established mouse embryonic fibroblasts (MEFs), we found that removal of p110β also had little effect on Akt-phosphorylation in response to insulin and EGF stimulation, but resulted in retarded cell proliferation. Reconstitution of p110β-null cells with a wild-type or kinase-dead allele of p110β demonstrated that p110β possesses kinase-independent functions in regulating cell proliferation and trafficking. However, the kinase activity of p110β was required for LPA triggered GPCR signalling and played a role in oncogenic transformation. Most strikingly, in an animal model of prostate tumor formation induced by PTEN loss, ablation of p110β, but not p110α, impeded tumorigenesis with concomitant diminution of Akt-phosphorylation. Taken together our findings demonstrate both kinase-dependent and -independent functions for p110β, and strongly point to the kinase-dependent functions of p110β as a promising target in cancer therapy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []