Cinnamide derived pyrimidine-benzimidazole hybrids as tubulin inhibitors: Synthesis, in silico and cell growth inhibition studies.
2021
Abstract An approach in modern medicinal chemistry to discover novel bioactive compounds is by mimicking diverse complementary pharmacophores. In extension of this strategy, a new class of piperazine-linked cinnamide derivatives of benzimidazole-pyrimidine hybrids have been designed and synthesized. Their in vitro cytotoxicity profiles were explored on selected human cancer cell lines. Specifically, structural comparison of target hybrids with tubulin-DAMA-colchicine and tubulin-nocodazole complexes has exposed a deep position of benzimidazole ring into the αT5 loop. All the synthesized compounds were demonstrated modest to interesting cytotoxicity against different cancer cell lines. The utmost cytotoxicity has shown with an amine linker of benzimidazole-pyrimidine series, with specificity toward A549 (lung cancer) cell line. The most potent compound in this series was 18i, which inhibited cancer cell growth at micromolar concentrations ranging 2.21–7.29 µM. Flow cytometry studies disclosed that 18i inhibited the cells in G2/M phase of cell cycle. The potent antitumor activity of 18i resulted from enhanced microtubule disruption at a similar level as nocodazole on β-tubulin antibody, explored using immunofluorescence staining. The most active compound 18i also inhibited tubulin polymerization with an IC50 of 5.72 ± 0.51 µM. In vitro biological analysis of 18i presented apoptosis induction on A549 cells with triggering of ROS generation and loss of mitochondrial membrane potential, resulting in DNA injury. In addition, 18i displayed impairment in cellular migration and inhibited the colony formation. Notably, the safety profile of most potent compound 18i was revealed by screening against normal human pulmonary epithelial cells (L132: IC50: 69.25 ± 5.95 μM). The detailed binding interactions of 18i with tubulin was investigated by employing molecular docking, superimposition and free energy analyses. Thus remarks made in this study established that pyrimidine-benzimidazole hybrids as a new class of tubulin polymerization inhibitors with significant anticancer activity.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
97
References
8
Citations
NaN
KQI