Revealing the Importance of Energetic and Entropic Contributions to the Driving Force for Charge Photogeneration

2018 
Despite significant recent progress, much about the mechanism for charge photogeneration in organic photovoltaics remains unknown. Here, we use conjugated block copolymers as model systems to examine the effects of energetic and entropic driving forces in organic donor–acceptor materials. The block copolymers are designed such that an electron donor block and an electron acceptor block are covalently linked, embedding a donor–acceptor interface within the molecular structure. This enables model studies in solution where processes occurring between one donor and one acceptor are examined. First, energy levels and dielectric constants that govern the driving force for charge transfer are systematically tuned and charge transfer within individual block copolymer chains is quantified. Results indicate that in isolated chains, a significant driving force of ∼0.3 eV is necessary to facilitate significant exciton dissociation to charge-transfer states. Next, block copolymers are cast into films, allowing for int...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    10
    Citations
    NaN
    KQI
    []