Mechanism and Kinetics of Ethane Aromatization According to the Chemical Transient Analysis

2020 
The need for on-purpose techniques for the conversion of cheaper and abundant light alkanes to petrochemical products has revitalized research interests on light alkanes aromatization. Here ethane/propane aromatization and ethylene oligomerization over the representative Zn-HZSM-5 and Pt/HZSM-5 catalysts have been studied by the step-perturbation transients to provide insight into the kinetics and mechanisms leading to higher olefins and aromatics formation from ethane aromatization. The time-dependent catalytic behavior during the build-up and back-transient between ethane and inert, ethane and propane, as well as ethylene and inert, has been extensively discussed. We suggested that the hydrocarbon-pool mechanism be involved once ethylene was produced from the dehydrogenation of ethane. The oligomerization/cracking, cyclization, and dehydrogenation/hydride transfer reactions involved with the hydrocarbon-pool species reach the thermodynamic equilibrium quickly. The initial ethane dehydrogenation and the final formation of aromatics from their corresponding intermediates are slow surface-reactions. The rate constants k for benzene, toluene, and xylene formation from the “lumped hydrocarbon-pool” have been evaluated based on the first-order kinetic model of the back-transient. The rate constants k for aromatics over the Pt0 clusters/particles in the Pt/HZSM-5 are ⁓ 20–30% higher than that over the Zn (II) cations in the Zn-HZSM-5 catalyst.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    2
    Citations
    NaN
    KQI
    []