Realization of ordered magnetic skyrmions in thin films at ambient conditions

2019 
Author(s): Desautels, RD; Debeer-Schmitt, L; Montoya, SA; Borchers, JA; Je, SG; Tang, N; Im, MY; Fitzsimmons, MR; Fullerton, EE; Gilbert, DA | Abstract: © 2019 American Physical Society. Magnetic skyrmions have captivated physicists due to their topological nature and novel physical properties. In addition, skyrmions hold significant promise for future information technologies. A key barrier to realizing skyrmion-based devices has been stabilizing these spin structures under ambient conditions. In this paper, we demonstrate that the tunable magnetic properties of amorphous Fe/Gd mulitlayers enable the formation of skyrmion lattices which are stable over a large temperature and magnetic field parameter space, including room temperature and zero magnetic field. These skyrmions, having a hybrid nature displaying both Bloch-type and Neel-type characteristics, are stabilized by dipolar interactions rather than Dzyaloshinskii-Moriya interactions, typically considered a requirement for the generation of skyrmions. Small angle neutron scattering (SANS) was used in combination with soft x-ray microscopy to provide a unique, multiscale probe of the local and long-range order of these structures. The hexagonal lattice seen in SANS results from the hybrid skyrmion picture obtained with micromagnetic simulations. These results identify a pathway to engineer controllable skyrmion phases in thin film geometries which are stable at ambient conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    19
    Citations
    NaN
    KQI
    []