Successful Performance of Laboratory Investigations with Blood Glucose Meters Employing a Dynamic Electrochemistry-Based Correction Algorithm Is Dependent on Careful Sample Handling

2016 
Abstract Background: Devices employing electrochemistry-based correction algorithms (EBCAs) are optimized for patient use and require special handling procedures when tested in the laboratory. This study investigated the impact of sample handling on the results of an accuracy and hematocrit interference test performed with BG*Star, iBG*Star; OneTouch Verio Pro and Accu-Chek Aviva versus YSI Stat 2300. Methods: Venous heparinized whole blood was manipulated to contain three different blood glucose concentrations (64–74, 147–163, and 313–335 mg/dL) and three different hematocrit levels (30%, 45%, and 60%). Sample preparation was done by either a very EBCA-experienced laboratory testing team (A), a group experienced with other meters but not EBCAs (B), or a team inexperienced with meter testing (C). Team A ensured physiological pO2 and specific sample handling requirements, whereas teams B and C did not consider pO2. Each sample was tested four times with each device. In a separate experiment, a different gr...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    5
    Citations
    NaN
    KQI
    []