Preparation of ZSM-5 containing vanadium and Brønsted acid sites with high promoting of styrene oxidation using 30% H2O2

2020 
Abstract Design and synthesis of low cost and efficacious industrial catalyst for the oxidation of styrene has been an important research project. Herein, ZSM-5 zeolite containing tetrahedral vanadium (V) and Bronsted acid sites (V-H-ZSM-5) was prepared, and identified by characterizations such as XRD, SEM, UV–vis, NH3-TPD, H2-TPR N2-adsorption/desorption and FTIR. V-H-ZSM-5 performed extremely enhanced catalytic activity for the oxidation of styrene with 30% H2O2 at 40 °C. Moreover, in-situ FTIR spectrum was used to investigate the catalytic mechanism. The results demonstrate that Bronsted acid site could not only increase the adsorption concentration of styrene in the micropores of V-H-ZSM-5 via the π complex interaction between double bond of styrene and Bronsted acid sites, but also increase the oxidation potential of H2O2. The synergetic action of tetrahedral vanadium (V) and Bronsted acid enhanced the catalytic activity for the oxidation of styrene with 30% H2O2. Impressively, V-H-ZSM-5 performed high reusability within five runs at a low reaction temperature (40 °C) for the first time.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    4
    Citations
    NaN
    KQI
    []