Modal phase matched lithium niobate nanocircuits for integrated nonlinear photonics

2018 
High complexity, dense integrated nanophotonic circuits possessing strong non-linearities are desirable for a breadth of applications in classical and quantum optics. In this work, we study phase matching via modal engineering in lithium niobate (LN) waveguides and microring resonators on chip for second harmonic generation (SHG). By carefully engineering the geometry dispersion, we observe a 26% W−1cm−2 normalized efficiency for SHG in a waveguide with submicron transverse mode confinement. With similar cross-sectional dimensions, we demonstrate a phase matched microring resonator with 10 times enhancement on SHG. Our platform is capable of harnessing the strongest optical nonlinear and electro-optic effects in LN on chip with unrestricted planar circuit layouts. It offers opportunities for dense and scalable integration of efficient photonic devices with low loss and high nonlinearity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    2
    Citations
    NaN
    KQI
    []