Self-Attention Bi-LSTM Networks for Radar Signal Modulation Recognition

2021 
As the electromagnetic environment in battlefields is more and more complex, automatic modulation recognition for radar signals is becoming vital and challenging. Traditional methods are more likely to cause lower recognition accuracy with higher computational complexity in low signal-to-noise ratio (SNR). Feature redundancy especially for handcrafted features is one of the shortcomings of deep-learning-based methods. In this article, a novel end-to-end sequence-based network that consists of a shallow convolutional neural network, a bidirectional long short-term memory (Bi-LSTM) network strengthening with a self-attention mechanism, and a dense neural network is constructed to recognize eight kinds of intrapulse modulations of radar signals. The autocorrelation functions of received radar signals are first calculated as autocorrelation features. Then, these features are employed as inputs of the proposed network which owns significant sequence processing advantages and adaptive selection ability of features. Finally, the proposed network outputs prediction modulations directly. The simulation results verify the robustness and effectiveness of autocorrelation features. And the proposed network achieves about 61.25% accuracy at -20 dB and more than 95% accuracy at -10 dB. Compared with four state-of-the-art networks, the proposed network has better recognition performance especially at low SNRs with much lower computational complexity. Results on measured signals also demonstrate that the proposed network outperforms these four networks.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    1
    Citations
    NaN
    KQI
    []