A site-directed mutagenesis study of human placental aromatase.

1992 
Abstract Aromatase, a cytochrome P-450, catalyzes the formation of aromatic C18 estrogenic steroids from C19 androgens. Using the x-ray structure of cytochrome P-450cam as the model, seven mutants of human aromatase were designed and expressed in Chinese hamster ovary cells by a stable expression method. They are His-128----Gln, His-128----Ala, Cys-299----Ala, Glu-302----Leu, Asp-309----Asn, Asp-309----Ala, and Ser-312----Cys. The presence of the aromatase mutants in the transfected Chinese hamster ovary cells were confirmed by immunoprecipitation analysis. The kinetic parameters of these mutants using [1 beta,2 beta-3H] androstenedione (or [1 beta-3H]androstenedione), and [1 beta,2 beta-3H]testosterone as substrates were determined. In addition, inhibition profiles for these mutants with two aromatase inhibitors, 4-hydroxyandrostenedione and aminoglutethimide were obtained. Furthermore, the reactions catalyzed by these mutants were examined by evaluating the levels of the product estrone, and two intermediates, 19-hydroxyandrostenedione and 19-oxoandrostenedione by reverse phase high performance liquid chromatography using [7-3H]androstenedione as the substrate. Our results indicate that among the positions we modified, Asp-309 appears to be very important for the enzyme catalysis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    66
    Citations
    NaN
    KQI
    []