Complex dynamics of a modified four order Wien-bridge oscillator model and FPGA implementation

2020 
This paper presents a novel fourth-order autonomous flux controlled memristive Wien-bridge system. Standard nonlinear diagnostic tools such as bifurcation diagram, graphs of largest Lyapunov exponent, Lyapunov stability diagram, phase space trajectory and isospike diagram are used to characterize dynamics of the system. Results show that the system presents hidden attractors with infinite equilibrium points known as line equilibrium for a suitable set of its parameters. The system also exhibits striking phenomenon of extreme multistability. Through isospike and Lyapunov stability diagram, spiral bifurcation leading to a center hub point is observed in a Wien-bridge circuit for the first time and the Field Programmable Gate Array -based implementation is performed to confirm its feasibility.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    1
    Citations
    NaN
    KQI
    []