Synthesis and photocatalytic activity of Eu3+-doped nanoparticulate TiO2 sols and thermal stability of the resulting xerogels
2014
Abstract The synthesis of nanoparticulate TiO 2 sols without and with Eu 3+ doping (1, 2, or 3 mol%) by the colloidal sol–gel method in aqueous media was investigated, with emphasis on the effect of the Eu 3+ doping on the peptization time and rheological properties of the sols. It was found that the addition of Eu 3+ increasingly retards the peptization process, and also results in sols with greater aggregate sizes which are therefore more viscous, although in all cases the distributions of aggregate sizes are unimodal and the flow behavior is Newtonian. The shifting of the isoelectric point of the sols toward greater pH with increasing Eu 3+ doping indicates that the aforementioned trends are due to the chemical adsorption of europium ionic complexes in the form of solvated species. Furthermore, the effect of Eu 3+ doping on the ultraviolet–visible spectrum and photocatalytic activity of the peptized sols was also explored. It was found that the Eu 3+ doping increasingly shifts slightly the absorption edge from the ultraviolet to the visible range, and that its effect on the photocatalytic activity is certainly complex because this is enhanced only if the Eu 3+ cations have some electronic transition (charge transfer transition or transitions between the ground state and the excited states) at the wavelength of the incident radiation, in which case the photocatalytic activity first increases with increasing Eu 3+ content and then decreases perhaps due to occurrence of Eu–Eu interactions or simply to the greater aggregation state. Finally, the influence of the Eu 3+ doping on the thermal stability of the nanoparticulate xerogels resulting from the drying of the peptized sols was also examined by X-ray thermo-diffractometry together with transmission electron microscopy, selected area electron diffractometry, and X-ray energy-dispersive spectrometry. It was found that although the xerogels crystallize all as anatase phase, this is increasingly more thermally stable with increasing Eu 3+ doping, displaying a slowed down nanocrystallite growth, delayed onset temperature of the anatase-to-rutile phase transformation, and extended retention temperature of anatase phase.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
30
References
20
Citations
NaN
KQI