The association between bone mineral density gene variants and osteocalcin at baseline, and in response to exercise: The Gene SMART study

2019 
Abstract Introduction Osteocalcin (OC) is used as a surrogate marker for bone turnover in clinical settings. As bone mineral density (BMD) is largely heritable, we tested the hypothesis that a) bone-associated genetic variants previously identified in Genome-Wide Association Studies (GWAS) and combined into a genetic risk score (GRS) are associated with a) circulating levels of OC and b) the changes in OC following acute exercise. Methods Total OC (tOC), undercarboxylated OC (ucOC), and carboxylated OC (cOC) were measured in serum of 73 healthy Caucasian males at baseline and after a single bout of high-intensity interval exercise. In addition, genotyping was conducted targeting GWAS variants previously reported to be associated with BMD and then combined into a GRS. Potential associations between the GRS and tOC, ucOC and cOC were tested with linear regressions adjusted for age. Results At baseline none of the individual SNPs associated with tOC, ucOC and cOC. However, when combined, a higher GRS was associated with higher tOC (β = 0.193 ng/mL; p  = 0.037; 95% CI = 0.012, 0.361) and cOC (β = 0.188 ng/mL; p  = 0.04; 95% CI = 0.004, 0.433). Following exercise, GRS was associated with ucOC levels, (β = 3.864 ng/mL; p -value = 0.008; 95% CI = 1.063, 6.664) but not with tOC or cOC. Conclusion Screening for genetic variations may assist in identifying people at risk for abnormal circulating levels of OC at baseline/rest. Genetic variations in BMD predicted the ucOC response to acute exercise indicating that physiological functional response to exercise may be influenced by bone-related gene variants.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    4
    Citations
    NaN
    KQI
    []