HLA-G dimer targets Granzyme B pathway to prolong human renal allograft survival
2019
Human leukocyte antigen G (HLA-G), a nonclassic HLA class Ib molecule involved in the maintenance of maternal tolerance to semiallogeneic fetal tissues during pregnancy, has emerged as a potential therapeutic target to control allograft rejection. We demonstrate here that the level of soluble HLA-G dimer was higher in a group of 90 patients with a functioning renal allograft compared with 40 patients who rejected (RJ) their transplants. The HLA-G dimer level was not affected by demographic status. One of the potential mechanisms in tissue-organ allograft rejection involves the induction of granzymes and perforin, which are the main effector molecules expressed by CD8+ cytotoxic T lymphocytes and function to destroy allogeneic transplants. Using genomics and molecular and cellular analyses of cells from T-cell–mediated RJ and nonrejected kidney transplant patients, cells from leukocyte Ig-like receptor B1 (LILRB1) transgenic mice, humanized mice, and genetically engineered HLA-G dimer, we demonstrated a no...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
52
References
8
Citations
NaN
KQI