The effect of musicianship, contralateral noise, and ear of presentation on the detection of changes in temporal fine structure

2019 
Musicians are better than non-musicians at discriminating changes in the fundamental frequency (F0) of harmonic complex tones. Such discrimination may be based on place cues derived from low resolved harmonics, envelope cues derived from high harmonics, and temporal fine structure (TFS) cues derived from both low and high harmonics. The present study compared the ability of highly trained violinists and non-musicians to discriminate changes in complex sounds that differed primarily in their TFS. The task was to discriminate harmonic (H) and frequency-shifted inharmonic (I) tones that were bandpass filtered such that the components were largely or completely unresolved. The effect of contralateral noise and ear of presentation was also investigated. It was hypothesized that contralateral noise would activate the efferent system, helping to preserve the neural representation of envelope fluctuations in the H and I stimuli, thereby improving their discrimination. Violinists were significantly better than non-musicians at discriminating the H and I tones. However, contralateral noise and ear of presentation had no effect. It is concluded that, compared to non-musicians, violinists have a superior ability to discriminate complex sounds based on their TFS, and this ability is unaffected by contralateral stimulation or ear of presentation.Musicians are better than non-musicians at discriminating changes in the fundamental frequency (F0) of harmonic complex tones. Such discrimination may be based on place cues derived from low resolved harmonics, envelope cues derived from high harmonics, and temporal fine structure (TFS) cues derived from both low and high harmonics. The present study compared the ability of highly trained violinists and non-musicians to discriminate changes in complex sounds that differed primarily in their TFS. The task was to discriminate harmonic (H) and frequency-shifted inharmonic (I) tones that were bandpass filtered such that the components were largely or completely unresolved. The effect of contralateral noise and ear of presentation was also investigated. It was hypothesized that contralateral noise would activate the efferent system, helping to preserve the neural representation of envelope fluctuations in the H and I stimuli, thereby improving their discrimination. Violinists were significantly better than non...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []