Construction of homogenized daily surface air temperature for Tianjin city during 1887–2019
2021
Abstract. The century-long continuous daily observations from some stations are important for the study of long-term trends and extreme climate events in the past. In this paper, three daily data sources: (1) Department of Industry Agency of British Concession in Tianjin covering Sep 1 1890–Dec 31 1931 (2) Water Conservancy Commission of North China covering Jan 1 1932–Dec 31 1950 and (3) monthly journal sheets for Tianjin surface meteorological observation records covering Jan 1 1951–Dec 31 2019 have been collected from the Tianjin Meteorological Archive. The completed daily maximum and minimum temperature series for Tianjin from Jan 1 1887 (Sep 1 1890 for minimum) to Dec 31 2019 has been constructed and assessed for quality control and an early extension from 1890 to 1887. Several significant breakpoints are detected by the Penalized Maximal T-test (PMT) for the daily maximum and minimum time series using multiple reference series around Tianjin from monthly Berkeley Earth, CRUTS4.03 and GHCNV3 data. Using neighboring daily series the record has been homogenized with Quantile Matching (QM) adjustments. Based on the homogenized dataset, the warming trend in annual mean temperature in Tianjin averaged from the newly constructed daily maximum and minimum temperature is evaluated as 0.154 ± 0.013 °C decade-1 during the last 130 years. Trends of temperature extremes in Tianjin are all significant at the 5 % level, and have much more coincident change than those from the raw, with amplitudes of −1.454 d decade−1, 1.196 d decade−1, −0.140 d decade−1 and 0.975 d decade−1 for cold nights (TN10p), warm nights (TN90p), cold days (TX10p) and warm days (TX90p) at the annual scale. The adjusted daily maximum, minimum and mean surface air temperature dataset for Tianjin city presented here is publicly available at https://doi.pangaea.de/10.1594/PANGAEA.924561 (Si and Li, 2020).
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI