Increase of CIK cell efficacy by upregulating cell surface MICA and inhibition of NKG2D ligand shedding in multiple myeloma.

2017 
Multiple myeloma, which is a monoclonal plasma cell malignancy, still remains incurable despite recent progress in our understanding of this disorder. Adoptive immunotherapy of multiple myeloma using cytokine-induced killer cells is yielding promising results in clinical trials; however, some myeloma cells still evade immune surveillance by various unknown molecular mechanisms. This study aims at increasing the efficacy of cytokine-induced killer cells in targeting this tumor, using selective small-molecule inhibitors which increase and stabilize surface expression of the natural killer group 2, member D ligand, major histocompatibility complex class I polypeptide-related sequence A (MICA) on myeloma cells. We treated 2 multiple myeloma cell lines—U266 and KMS-12-PE—with 3 drugs. One of these drugs (sodium butyrate) is a histone deacetylase inhibitor. Another drug which was used (matrix metalloproteinase inhibitor III) blocks ligand shedding while the third drug (phenylarsine oxide) obstructs surface ligand internalization. The effect of these drugs on cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, surface ligand expression was examined using flow cytometry, and ligand shedding was assessed using enzyme-linked immunosorbent assay. We demonstrated that cytokine-induced killer cells have increased cytotoxicity against multiple myeloma cells after combined drug treatment than without drug pretreatment. We also established that this increased cytotoxicity was due to potent upregulation and stabilization of surface MICA on the surface of these tumor cell lines. Our study thus highlights further therapeutic options which could be used for the treatment of multiple myeloma patients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    18
    Citations
    NaN
    KQI
    []