Development of a nanogel formulation for transdermal delivery of tenoxicam: a pharmacokinetic–pharmacodynamic modeling approach for quantitative prediction of skin absorption

2017 
AbstractThis study investigates potentials of solid lipid nanoparticles (SLN)-based gel for transdermal delivery of tenoxicam (TNX) and describes a pharmacokinetic–pharmacodynamic (PK–PD) modeling approach for predicting concentration–time profile in skin. A 23 factorial design was adopted to study the effect of formulation factors on SLN properties and determine the optimal formulation. SLN-gel tolerability was investigated using rabbit skin irritation test. Its anti-inflammatory activity was assessed by carrageenan-induced rat paw edema test. A published Hill model for in vitro inhibition of COX-2 enzyme was fitted to edema inhibition data. Concentration in skin was represented as a linear spline function and coefficients were estimated using non-linear regression. Uncertainty in predicted concentrations was assessed using Monte Carlo simulations. The optimized SLN was spherical vesicles (58.1 ± 3.1 nm) with adequate entrapment efficiency (69.6 ± 2.6%). The SLN-gel formulation was well-tolerated. It inc...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    20
    Citations
    NaN
    KQI
    []