Extracellular histones stimulate collagen expression and potentially promote liver fibrogenesis via TLR4-MyD88 signalling pathway

2020 
BACKGROUND: Liver fibrosis progressing to liver cirrhosis and hepatic carcinoma is very common and causes more than one million deaths annually. Fibrosis develops from recurrent liver injury but the molecular mechanisms are not fully understood. Recently, the Toll-like receptor (TLR) 4-MyD88 signalling pathway has been reported to contribute to fibrosis. Extracellular histones are the ligands of TLR4 but their roles in liver fibrosis have not been investigated. AIM: This study aims to investigate the roles and potential mechanisms of extracellular histones in liver fibrosis. METHODS: In vitro, the LX2 cells, a human hepatic stellate cell (HSC) line, were treated with histones in the presence or absence of non-anticoagulant heparin (NAHP) for neutralising histones or TLR4-blocking antibody. The cells resultant expression of collagen I was detected using Western blotting and immunofluorescent staining. In vivo, the CCl4-induced liver fibrosis model was generated in male 6 week old ICR mice and in TLR4 or MyD88 knockout and parental mice. Circulating histones were detected and the effect of NAHP was evaluated. RESULTS: Extracellular histones strongly stimulated LX2 cells to produce collagen I. The histone-enhanced collagen expression was significantly reduced by NAHP and TLR4 blocking antibody. In CCl4-treated wild type mice, circulating histones were dramatically increased and maintained high levels during the whole course of fibrosis-induction. Injection of NAHP not only reduced alanine aminotransferase (ALT) and liver injury scores, but also significantly reduced fibrogenesis. Since the TLR4-blocking antibody reduced histone-enhanced collagen I production in HSC, the CCl4 model with TLR-4 and MyD88 knockout mice was used to demonstrate the roles of the TLR4-MyD88 signalling pathway in CCl4-induced liver fibrosis. The levels of liver fibrosis were indeed significantly lower than in these knockout mice than the wild type parental mice. CONCLUSION: This study demonstrated that extracellular histones are able to stimulate HSC to produce collagen I and TLR4 is involved in this process. The in vivo findings support the novel concept that high levels of circulating histones potentially stimulate TLR4 receptor to enhance fibrogenesis via the TLR4-MyD88 signalling pathway. NAHP detoxify extracellular histones and thus has a potential therapeutic role by reducing liver injury and fibrogenesis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    0
    Citations
    NaN
    KQI
    []