rmc-discord: reverse Monte Carlo refinement of diffuse scattering and correlated disorder from single crystals

2021 
A user-friendly program has been developed to analyze diffuse scattering from single crystals with the reverse Monte Carlo method. The approach allows for refinement of correlated disorder from atomistic supercells with magnetic or structural (occupational and/or displacive) disorder. The program is written in Python and optimized for performance and efficiency. Refinements of two user cases obtained with legacy neutron-scattering data demonstrate the effectiveness of the approach and the developed program. It is shown with bixbyite, a naturally occurring magnetic mineral, that the calculated three-dimensional spin-pair correlations are resolved with finer real-space resolution compared with the pair distribution function calculated directly from the reciprocal-space pattern. With the triangular lattice Ba3Co2O6(CO3)0.7, refinements of occupational and displacive disorder are combined to extract the one-dimensional intra-chain correlations of carbonate molecules that move toward neighboring vacant sites to accommodate strain induced by electrostatic interactions. The program is packaged with a graphical user interface and extensible to serve the needs of single-crystal diffractometer instruments that collect diffuse-scattering data.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    0
    Citations
    NaN
    KQI
    []