Global and regional model simulations of atmospheric ammonia

2020 
Abstract Ammonia (NH3) is a basic gas of significant atmospheric interest because of its role in the possible formation of fine particulates and because it is a source of fixed nitrogen in soils and plants. NH3 processing in the atmosphere has been simulated using two 3-D models: the global chemistry transport model, STOCHEM-CRI and the regional coupled meteorological-chemical model, WRF-Chem-CRI. From analysis of STOCHEM-CRI simulations, NH3 removal fluxes of dry deposition (24.6 Tg(N)/yr), wet deposition (20.8 Tg(N)/yr), NH4+ formation (25.6 Tg(N)/yr) and reaction with OH (1.7 Tg(N)/yr) have been calculated, making a global annual average burden of 0.22 Tg(N) and life-time of 1.1 days. The gas-phase loss by OH, NO3 and stabilized Criegee intermediates contribute 2.3%,
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    115
    References
    7
    Citations
    NaN
    KQI
    []