Oxidative stress-mediated TXNIP loss causes RPE dysfunction

2019 
The disruption of the retinal pigment epithelium (RPE), for example, through oxidative damage, is a common factor underlying age-related macular degeneration (AMD). Aberrant autophagy also contributes to AMD pathology, as autophagy maintains RPE homeostasis to ensure blood–retinal barrier (BRB) integrity and protect photoreceptors. Thioredoxin-interacting protein (TXNIP) promotes cellular oxidative stress by inhibiting thioredoxin reducing capacity and is in turn inversely regulated by reactive oxygen species levels; however, its role in oxidative stress-induced RPE cell dysfunction and the mechanistic link between TXNIP and autophagy are largely unknown. Here, we observed that TXNIP expression was rapidly downregulated in RPE cells under oxidative stress and that RPE cell proliferation was decreased. TXNIP knockdown demonstrated that the suppression of proliferation resulted from TXNIP depletion-induced autophagic flux, causing increased p53 activation via nuclear localization, which in turn enhanced AMPK phosphorylation and activation. Moreover, TXNIP downregulation further negatively impacted BRB integrity by disrupting RPE cell tight junctions and enhancing cell motility by phosphorylating, and thereby activating, Src kinase. Finally, we also revealed that TXNIP knockdown upregulated HIF-1α, leading to the enhanced secretion of VEGF from RPE cells and the stimulation of angiogenesis in cocultured human retinal microvascular endothelial cells. This suggests that the exposure of RPE cells to sustained oxidative stress may promote choroidal neovascularization, another AMD pathology. Together, these findings reveal three distinct mechanisms by which TXNIP downregulation disrupts RPE cell function and thereby exacerbates AMD pathogenesis. Accordingly, reinforcing or restoring BRB integrity by targeting TXNIP may serve as an effective therapeutic strategy for preventing or attenuating photoreceptor damage in AMD. A protein found in retinal cells promotes the development of age-related macular degeneration and may provide a therapeutic target. Sight loss through macular degeneration is triggered by disruption to the retinal pigment epithelium (RPE), a layer of cells that carries nutrients to the eye. RPE cells can be disrupted under oxidative stress conditions, but how this influences macular degeneration is unclear. Jeong-Ki Min and Sang-Hyun Lee at the Korea Research Institute of Bioscience and Biotechnology in Daejeon, South Korea, and co-workers found that oxidative stress reduces levels of the thioredoxin-interacting protein (TXNIP) in human RPE cell cultures. This interrupts cellular communication and disturbs the balance between cell proliferation and cell recycling. It also increases the levels of proteins that promote excess blood vessel formation, a key process contributing to macular degeneration.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    18
    Citations
    NaN
    KQI
    []