Sill-Influenced Exchange Flows in Ice Shelf Cavities

2019 
AbstractBathymetric sills are important features in the ocean-filled cavities beneath a few fast-retreating ice shelves in West Antarctica and northern Greenland. The sills can be high enough to obstruct the cavity circulation and thereby modulate glacial melt rates. This study focuses on the idealized problem of diabatically driven, sill-constrained overturning circulation in a cavity. The circulation beneath fast-melting ice shelves can generally be characterized by an inflow of relatively warm dense water (with temperatures of a few degrees Celsius above the local freezing point) at depth and cold, less-dense, outflowing water, which exhibits an approximately two-layer structure in observations. We use a two-layer isopycnal hydrostatic model to study the cross-sill exchange of these waters in ice shelf cavities wide enough to be rotationally dominated. A quasigeostrophic constraint is determined for the transport imposed by the stratification. Relative to this constraint, the key parameters controlling...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    8
    Citations
    NaN
    KQI
    []