FGF-2 binding to fibrin(ogen) is required for augmented angiogenesis

2006 
We have shown previously that fibrin(ogen) binds fibroblast growth factor 2 (FGF-2) and potentiates stimulation of endothelial-cell (EC) proliferation. We have now used 2 FGF-2 mutants differing only in the 5 residues constituting the binding site to characterize the importance of this interaction in angiogenesis. The nonbinding (2212) and binding (221*2) mutants stimulated EC proliferation by 2.2 ± 0.4-fold and 2.9 ± 0.3-fold over control, respectively, and both were similar to wild-type (wt) FGF-2 (2.5 ± 0.3-fold). Proliferation was augmented by fibrinogen to 5.3 ± 1.2-fold and 4.8 ± 0.8-fold with wtFGF-2 and 221*2, whereas no augmentation occurred with 2212 and fibrinogen. Using a placental explant model in a fibrin matrix, wtFGF-2 resulted in 2.6 ± 0.9-fold more growth over control, and 221*2 increased growth 3.3 plus or minus 0.9-fold. Vessel outgrowth with 2212 was minimal and comparable to control. Similarly, fibrinogen potentiated wtFGF-2 or 221*2-mediated angiogenesis in the chicken chorioallantoic membrane model. In a mouse Matrigel implant model, fibrinogen significantly increased angiogenesis with either wtFGF-2 or 221*2, whereas there was no augmentation with 2212. These results demonstrate that binding of FGF-2 to fibrin(ogen) mediated by the 5-residue FGF-2-fibrin(ogen) interactive site is required for augmented angiogenesis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    75
    Citations
    NaN
    KQI
    []