Study on Development Sustainability of Atmospheric Environment in Northeast China by Rough Set and Entropy Weight Method

2019 
In order to evaluate the atmospheric environment sustainability in the provinces of Northeast China, this paper has constructed a comprehensive evaluation model based on the rough set and entropy weight methods. This paper first constructs a Pressure-State-Response (PSR) model with a pressure layer, state layer and response layer, as well as an atmospheric environment evaluation system consisting of 17 indicators. Then, this paper obtains the weight of different indicators by using the rough set method and conducts equal-width discrete analysis and clustering analysis by using SPSS software. This paper has found that different discrete methods will end up with different reduction sets and multiple indicators sharing the same weight. Therefore, this paper has further introduced the entropy weight method based on the weight solution determined by rough sets and solved the attribute reduction sets of different layers by using the Rosetta software. Finally, this paper has further proved the rationality of this evaluation model for atmospheric environment sustainability by comparing the results with those of the entropy weight method alone and those of the rough set method alone. The results show that the sustainability level of the atmospheric environment in Northeast China provinces has first improved, and then worsened, with the atmospheric environment sustainability level reaching the highest level of 0.9275 in 2014, while dropping to the lowest level of 0.6027 in 2017. Therefore, future efforts should focus on reducing the pressure layer and expanding the response layer. Based on analysis of the above evaluation results, this paper has further offered recommendations and solutions for the improvement of atmospheric environment sustainability in the three provinces of Northeast China.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    77
    References
    6
    Citations
    NaN
    KQI
    []