The resolvent algebra of non-relativistic Bose fields: sectors, morphisms, fields and dynamics.
2018
It was recently shown [2] that the resolvent algebra of a non-relativistic Bose field determines a gauge invariant (particle number preserving) kinematical algebra of observables which is stable under the automorphic action of a large family of interacting dynamics involving pair potentials. In the present article, this observable algebra is extended to a field algebra by adding to it isometries, which transform as tensors under gauge transformations and induce particle number changing morphisms of the observables. Different morphisms are linked by intertwiners in the observable algebra. It is shown that such intertwiners also induce time translations of the morphisms. As a consequence, the field algebra is stable under the automorphic action of the interacting dynamics as well. These results establish a concrete C*-algebraic framework for interacting non-relativistic Bose systems in infinite space. It provides an adequate basis for studies of long range phenomena, such as phase transitions, stability properties of equilibrium states, condensates, and the breakdown of symmetries.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
9
References
1
Citations
NaN
KQI