Out-of-time-order correlations and the fine structure of eigenstate thermalisation

2021 
Out-of-time-order correlators (OTOCs) have become established as a tool to characterise quantum information dynamics and thermalisation in interacting quantum many-body systems. It was recently argued that the expected exponential growth of the OTOC is connected to the existence of correlations beyond those encoded in the standard Eigenstate Thermalisation Hypothesis (ETH). We show explicitly, by an extensive numerical analysis of the statistics of operator matrix elements in conjunction with a detailed study of OTOC dynamics, that the OTOC is indeed a precise tool to explore the fine details of the ETH. In particular, while short-time dynamics is dominated by correlations, the long-time saturation behaviour gives clear indications of an operator-dependent energy scale associated to the emergence of an effective Gaussian random matrix theory.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    6
    Citations
    NaN
    KQI
    []