Experimental Study on the Effects of Aspect Ratio on the Wind Pressure Coefficient of Piloti Buildings

2021 
Owing to strong winds during the typhoon season, damage to pilotis in the form of dropout of the exterior materials occurs frequently. Pilotis placed at the end exhibit a large peak wind pressure coefficient of the ceiling. In this study, the experimental wind direction angle of wind pressure tests was conducted in seven directions, with wind test angles varying from 0° to 90° at intervals of 15°, centered on the piloti position, which was accomplished using the wind tunnel experimental system. Regardless of the height of the building, the maximum peak wind pressure coefficient was observed at the center of the piloti, whereas the minimum peak wind pressure coefficient was noted at the corners, which corresponds with the wind direction inside the piloti. The distribution of the peak wind pressure coefficient was similar for both suburban and urban environments. However, in urban areas, the maximum peak wind pressure coefficient was approximately 1.4–1.7 times greater than that in suburban areas. The maximum peak wind pressure coefficient of the piloti ceiling was observed at the inside corner, whereas the minimum peak wind pressure coefficient was noted at the outer edge of the ceiling. As the height of the building increased, the maximum peak wind pressure coefficient decreased. Suburban and urban areas exhibited similar peak wind pressure distributions; however, the maximum peak wind pressure coefficient in urban areas was approximately 1.2–1.5 times larger than that in suburban areas.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    0
    Citations
    NaN
    KQI
    []