A Preliminary Study of Interactive Navigation Framework with Situation-Adaptive Multimodal Inducement: Pass-By Scenario
2019
Human-aware navigation is an essential requirement for autonomous robots in human-coexisting environments. The goal of conventional navigation is to find a path for a robot to pass through safely and efficiently without colliding with human. Note that if such a path cannot be found, the robot stops until a path is clear. Thus, such collision-avoidance based passive navigation does not work in a congested or narrow space. To avoid this freezing problem, the robot should induce humans to make a space for passing by an adequate inducement method, such as body movement, speech, and touch, depending on the situation. A robot that deliberately clears a path with such actions may make humans uncomfortable, so the robot should also utilize inducements to avoid causing negative feelings. In this study, we propose a fundamental framework of interactive navigation with situation-adaptive multimodal inducement. For a preliminary study, we target a passing scenario in a narrow corridor where two humans are standing and adopt a model-based approach focusing on common parameters. The suitable inducement basically varies depending on the largest space through which a robot can pass, distance between the robot and a human, and human behavior such as conversing. We thus develop a situation-adaptive inducement selector on the basis of the relationship between human–robot proximity and allowable inducement strength, considering robot efficiency and human psychology. The proposed interactive navigation system was tested across some contextual scenarios and compared with a fundamental path planner. The experimental results indicated that the proposed system solved freezing problems, provided a safe and efficient trajectory, and improved humans’ psychological reaction although the evidence was limited to robot planner and hardware design we used as well as certain scenes, contexts, and participants.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
61
References
2
Citations
NaN
KQI