Evaluation of toxicity and antitumor activity of cycloviolacin O2 in mice

2010 
Cycloviolacin O2 is a small cyclic cysteine-rich protein belonging to the group of plant proteins called cyclotides. This cyclotide has been previously shown to exert cytotoxic activity against a variety of human tumor cell lines as well as primary cultures of human tumor cells in vitro. This study is the first evaluation of its tolerability and antitumor activity in vivo. Maximal-tolerated doses were estimated to 1.5 mg/kg for single intravenous (i.v.) dosing and 0.5 mg/kg for daily repeated dosing, respectively. Two different in vivo methods were used: the hollow fiber method with single dosing (i.v. 1.0 mg/kg) and traditional xenografts with repeated dosing over 2 weeks (i.v. 0.5 mg/kg daily, 5 days a week). The human tumor cell lines used displayed dose-dependent in vitro sensitivity (including growth in hollow fibers to confirm passage of cycloviolacin O2 through the polyvinylidene fluoride fibers), with IC50 values in the micromolar range. Despite this sensitivity in vitro, no significant antitumor effects were detected in vivo, neither with single dosing in the hollow fiber method nor with repeated dosing in xenografts. In summary, the results indicate that antitumor effects are minor or absent at tolerable (sublethal) doses, and cycloviolacin O2 has a very abrupt in vivo toxicity profile, with lethality after single injection at 2 mg/kg, but no signs of discomfort to the animals at 1.5 mg/kg. Repeated dosing of 1 mg/kg gave a local-inflammatory reaction at the site of injection after 2–3 days; lower doses were without complications. © 2010 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 94: 626–634, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    33
    Citations
    NaN
    KQI
    []