Quench detection for high temperature superconductor magnets: A novel technique based on Rayleigh-backscattering interrogated optical fibers

2016 
High temperature superconducting materials are the only option for the generation of magnetic fields exceeding 25 T and for magnets operating over a broad range of temperature and magnetic field for power applications. One remaining obstacle for the implementation of high temperature superconductors magnets into systems, however, is the inability to rapidly detect a quench. In this letter we present a novel quench detection technique that has been investigated experimentally. Optical fibers are co-wound into two small Bi2Sr2Ca2Cu3O10+x superconducting coils and interrogated by Rayleigh-backscattering. Two different configurations are used, one with the fiber atop the conductor and the other with the fiber located as turn-to-turn insulation. Each coil is also instrumented with voltage taps (VTs) and thermocouples for comparison during heater-induced quenches. The results show that Rayleigh-backscattering interrogated optical fibers (RIOF) have significant advantages over traditional techniques, including very high spatial resolution and the ability to detect a hot-spot well before the peak local temperature exceeds the current sharing temperature. Thus, RIOF quench detection is intrinsically faster than VTs, and this intrinsic advantage is greater as the coil size and/or current margin increases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    54
    Citations
    NaN
    KQI
    []