Influence of surfactants on biomolecular conjugation of magnetic nanoparticles.

2021 
Here, we report the physicochemical interaction among iron oxide nanoparticles (MNPs) and essential biomolecules, namely, serum albumin (BSA, HSA), collagen and deoxyribonucleic acid (DNA) in the presence of various cationic, anionic and non-ionic surfactants. Iron oxide nanoparticles are synthesized by the wet chemical process and are characterized by X-ray powder diffraction analysis (XRD), Fourier transform infrared spectroscopic, UV-Vis spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy mapping studies . The conjugation of MNPs protein was analyzed using UV-Vis spectroscopy, fluorescence spectroscopy, circular dichroism technique and gel electrophoresis. The spectroscopic investigation illustrates the surfactant-dependent binding between MNPs and protein. Gel electrophoresis in the absence and presence of MNPs-surfactant systems has been used to study the impact on DNA structure. It was found that Tween 80 imparts better stability as well as biocompatibility to the synthesized MNPs. The findings offer extensive information on the influence of various surfactant coatings on MNP surfaces and their influence on vital biomolecules, making it useful for designing MNPs for biological applications.Communicated by Ramaswamy H. Sarma.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    0
    Citations
    NaN
    KQI
    []