Three-dimensional Porous Carbon/Co3O4 Composites Derived from Graphene/Co-MOF for High Performance Supercapacitor electrodes

2019 
Abstract The three-dimensional porous carbon (3DPC)/Co3O4 composites were prepared via pyrolysis of 3D graphene/Co-MOF precursor. The rich carbon content, amorphous state and hierarchical porous structure remarkably accelerated electron and ion transport. The oxygen-deficient Co3O4 state provided more active sites. Consequently, the 3DPC/Co3O4 electrode delivered enhanced capacitive performance owing to these advantages, which exhibited a high specific capacitance of 423 F g-1 at 1 A g-1, good rate capability of 85.7% capacitance retention even at 10 A g-1, and ideal durability with about 17% capacitance decay after 2000 cycles. Moreover, the 3DPC/Co3O4//AC asymmetric supercapacitor exhibited a broad potential window of 1.7 V and a maximum energy density of 21.1 Wh kg-1 with a power density of 790 W kg-1.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    68
    Citations
    NaN
    KQI
    []