Modification by covalent reaction or oxidation of cysteine residues in the tandem-SH2 domains of ZAP-70 and Syk can block phosphopeptide binding.
2015
Zeta-chain Associated Protein of 70kDa (ZAP-70) and Spleen tyrosine kinase (Syk) are non-receptor tyrosine kinases that are essential for T-cell and B-cell antigen receptor signaling, respectively. They are recruited, via their tandem-SH2 domains, to doubly-phosphorylated Immunoreceptor Tyrosine-based Activation Motifs (ITAMs) on invariant chains of immune antigen receptors. Because of their critical roles in immune signaling, ZAP-70 and Syk are targets for the development of drugs for autoimmune diseases. We show that three thiol-reactive small molecules can prevent the tandem-SH2 domains of ZAP-70 and Syk from binding to phosphorylated ITAMs. We identify a specific cysteine residue in the phosphotyrosine-binding pocket of each protein (Cys 39 in ZAP-70, Cys 206 in Syk) that is necessary for inhibition by two of these compounds. We also find that ITAM binding to ZAP-70 and Syk is sensitive to the presence of hydrogen peroxide, and these two cysteine residues are also necessary for inhibition by hydrogen peroxide. Our findings suggest a mechanism by which the generation of reactive oxygen species generated during responses to antigen could attenuate signaling through these kinases, and may also inform the development of ZAP-70 and Syk inhibitors that bind covalently to their SH2 domains.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
43
References
16
Citations
NaN
KQI