Positively charged conjugated microporous polymers with antibiofouling activity for ultrafast and highly selective uranium extraction from seawater

2020 
Abstract Uranium high-efficiency separation from seawater still has some obstacles such as slow sorption rate, poor selectivity and biofouling. Herein, we report a strategy for ultrafast and highly selective uranium extraction from seawater by positively charged conjugated microporous polymers (CMPs). The polymers are synthesized by Sonogashira-Hagihara cross-coupling reaction of 1,3-dibromo-5,5-dimethylhydantoin and 1,3,5-triethynylbenzene, and then modified with oxime and carboxyl via click reaction. The CMPs show an ultrafast sorption (0.46 mg g−1 day−1) for uranium, and possess an outstanding selectivity with a high sorption capacity ratio of U/V (8.4) in real seawater. The study of adsorption process and mechanism indicate that the CMPs skeleton exhibits high affinity for uranium and can accelerate the sorption, and uranium(VI) is adsorbed on the materials by the interaction of oxime/carboxyl ligands and hydantoin. Moreover, the material can be simply loaded onto the filter membrane, and shows remarkable antibiofouling properties against E. coli and S. aureus and excellent uptake capacity for uranium with low concentration in real seawater. This work may provide a promising approach to design adsorbents with fast adsorption rate, high selectivity and antibacterial activity, and expand the thinking over the development of novel and highly efficient adsorbents for uranium extraction from seawater.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    9
    Citations
    NaN
    KQI
    []