A Solution for Homogeneous Liver Enhancement in Computed Tomography: Results From the COMpLEx Trial

2020 
OBJECTIVES The aim of the study was to reach homogeneous enhancement of the liver, irrespective of total body weight (TBW) or tube voltage. An easy-to-use rule of thumb, the 10-to-10 rule, which pairs a 10 kV reduction in tube voltage with a 10% decrease in contrast media (CM) dose, was evaluated. MATERIALS AND METHODS A total of 256 patients scheduled for an abdominal CT in portal venous phase were randomly allocated to 1 of 4 groups. In group 1 (n = 64), a tube voltage of 120 kV and a TBW-adapted CM injection protocol was used: 0.521 g I/kg. In group 2 (n = 63), tube voltage was 90 kV and the TBW-adapted CM dosing factor remained 0.521 g I/kg. In group 3 (n = 63), tube voltage was reduced by 20 kV and CM dosing factor by 20% compared with group 1, in line with the 10-to-10 rule (100 kV; 0.417 g I/kg). In group 4 (n = 66), tube voltage was decreased by 30 kV paired with a 30% decrease in CM dosing factor compared with group 1, in line with the 10-to-10 rule (90 kV; 0.365 g I/kg). Objective image quality was evaluated by measuring attenuation in Hounsfield units (HU), signal-to-noise ratio, and contrast-to-noise ratio in the liver. Overall subjective image quality was assessed by 2 experienced readers by using a 5-point Likert scale. Two-sided P values below 0.05 were considered significant. RESULTS Mean attenuation values in groups 1, 3, and 4 were comparable (118.2 ± 10.0, 117.6 ± 13.9, 117.3 ± 21.6 HU, respectively), whereas attenuation in group 2 (141.0 ± 18.2 HU) was significantly higher than all other groups (P < 0.01). No significant difference in attenuation was found between weight categories 80 kg or less and greater than 80 kg within the 4 groups (P ≥ 0.371). No significant differences in subjective image quality were found (P = 0.180). CONCLUSIONS The proposed 10-to-10 rule is an easily reproducible method resulting in similar enhancement in portal venous CT of the liver throughout the patient population, irrespective of TBW or tube voltage.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    1
    Citations
    NaN
    KQI
    []