A synthetic optically pumped gradiometer for magnetocardiography measurements

2020 
Magnetocardiography (MCG) measurement is important for investigating the cardiac biological activities. Traditionally, the extremely weak MCG signal was detected by using superconducting quantum interference devices (SQUIDs). As a room-temperature magnetic-field sensor, optically pumped magnetometer (OPM) has shown to have comparable sensitivity to that of SQUIDs, which is very suitable for biomagnetic measurements. In this paper, a synthetic gradiometer was constructed by using two OPMs under spin-exchange relaxation-free (SERF) conditions within a moderate magnetically shielded room (MSR). The magnetic noise of the OPM was measured to less than 70 fT/Hz1/2. Under a baseline of 100 mm, noise cancellation of about 30 dB was achieved. MCG was successfully measured with a signal to noise ratio (SNR) of about 37 dB. The synthetic gradiometer technique was very effective to suppress the residual environmental fields, demonstrating the OPM gradiometer technique for highly cost-effective biomagnetic measurements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    1
    Citations
    NaN
    KQI
    []